Threshold Resummation in Momentum Space from Effective Field Theory

Thomas Becher
Fermilab theory seminar, 9/7/06

TB, M.Neubert, PRL 97, '06
TB, B. Pecjak and M. Neubert, hep-ph/0607228

Why resummation?

- Fixed order perturbation theory problematic for problems with widely separated scales $Q_1 >> Q_2$.
 - Large logarithms $\alpha_s^n \operatorname{Log^n}(Q_1/Q_2)$ and $\alpha_s^n \operatorname{Log^{2n}}(Q_1/Q_2)$.
 Sudakov logarithms
 - Scale in coupling? $\alpha_s(Q_1)$ or $\alpha_s(Q_2)$?
- Solution to both problems: integrate out physics at Q₁, solve RG, evolve to lower scale Q₂.
 - Effective theories

Resummation for collider processes

- An old problem! In the past 20 years resummations were performed for many processes with scale hierarchies
 - DIS for $x \rightarrow 1$, Drell-Yan and Higgs production for $Q^2/s \rightarrow 1$, for $Q_T^2/Q^2 \rightarrow 0$.
 - e⁺e⁻ event shapes, hadronic event shapes, ...
 - •
 - LL for arbitrary observable with parton shower
- Resummation is traditionally performed with diagrammatic methods.
 - No clear scale separation.

Bill Bardeen, in April: "So why don't you use your effective theory to do these resummations?"

Bill Bardeen, yesterday: "Hadronic showers. Isn't it all Soft-Collinear Effective Theory?"

Soft-collinear effective theory

Bauer, Pirjol, Stewart '00

- Eff. theory to analyze processes involving large momentum transfers and small invariant masses
- Originally developed to analyze *B*-meson decays to light hadrons
 - $B \rightarrow \pi \pi$, $B \rightarrow X_{u} l \nu$, ...

Work in

progress

- So far, we have analyzed only simplest process, DIS for $x \rightarrow 1$ (as well as inclusive B-decays)
 - High precision: Next-to-next-to-next-to-leading logarithmic accuracy (N³LL)
 - Detailed comparison with standard approach
 - Drell-Yan process and Higgs production for Q²/s
 →1 underway. (See also Idilbi, Ji and Yuan, hep-ph/0605068.)
- Bauer and Schwartz: interesting proposal to improve parton showers with eff. theory
 - Not yet implemented, tested only at LL accuracy.

Outline

- DIS in the end-point region
- Factorization analysis
- Resummation
 - Traditional method
 - Using RG-evolution in SCET
 - Numerical results

Kinematics of DIS

$$e^{-}(k) + N(p) \rightarrow e^{-}(k') + X(P)$$

$$Q^2 = -q^2$$

$$x = \frac{Q^2}{2p \cdot q}$$

• Are interested in the limit $x \rightarrow 1$, more precisely $Q^2 \gg Q^2(1-x) \gg \Lambda_{QCD}^2$

$$\approx M_X^2$$

Hadronic tensor

Leptonic part factors off trivially

$$d\sigma = \frac{1}{2s} \frac{d^3k'}{k^0} \frac{1}{(q^2)^2} L^{\mu\nu}(k,q) W_{\mu\nu}(p,q)$$

$$L^{\mu\nu} = \frac{e^2}{8\pi^2} \text{tr} \left[k \gamma^{\mu} k' \gamma^{\mu} \right] \quad W_{\mu\nu} = \frac{1}{8\pi} \sum_{\sigma} \sum_{X} \langle N(p,\sigma) | J_{\mu}(0) | X \rangle \langle X | J_{\nu}(0) | N(p,\sigma) \rangle \times (2\pi)^4 \delta(p_X - q - p)$$

• Optical theorem. Structure functions F_1 and F_2

$$W_{\mu\nu} = \frac{1}{8\pi} 2 \operatorname{Im} T_{\mu\nu} = \left(\frac{q_{\mu}q_{\nu}}{q^2} - g_{\mu\nu}\right) F_1(x, Q^2) + \left(\frac{p_{\mu}}{p \cdot q} - \frac{q_{\mu}}{q^2}\right) \left(\frac{p_{\mu}}{p \cdot q} - \frac{q_{\mu}}{q^2}\right) F_2(x, Q^2)$$

$$T_{\mu\nu} = i \int d^4x \, e^{iqx} \sum_{\sigma} \langle N(p,\sigma) | \operatorname{T} \left[J_{\mu}^{\dagger}(x) J_{\nu}(0) \right] | N(p,\sigma) \rangle$$

Factorization theorems

• Generic *x*

• End-point region $x \rightarrow 1$ $(Q^2 \gg M_X^2 \gg M_N^2)$

$$F_2^{\rm ns}(x,Q^2) = H(Q^2,\mu)\,Q^2\int_x^1\frac{dz}{z}\,J\!\left(Q^2\frac{1-z}{z},\mu\right)\frac{x}{z}\,\phi_q^{\rm ns}\!\left(\frac{x}{z},\mu\right) \\ \approx M_X^2 \qquad \text{Sterman '87}$$

Measurements of F₂

Note: all measurements have $x \le 0.85$.

Factorization analysis

310 7418240490 0437213507 5003588856 7930037346 0228427275 4572016194 8823206440 5180815045 5634682967 1723286782 4379162728 3803341547 1073108501 9195485290 0733772482 2783525742 3864540146 9173660247 7652346609

=

1634733 6458092538 4844313388 3865090859 8417836700 3309231218 1110852389 3331001045 0815121211 8167511579

X

1900871 2816648221 1312685157 3935413975 4718967899 6851549366 6638539088 0271038021 0449895719 1261465571

Factorization analysis in SCET

- 1. Start with QCD correlation function which describes process under consideration.
- 2. Identify relevant momentum regions for its expansion around $Q^2 \rightarrow \infty$
- 3. Introduce corresponding effective theory fields. Derive Lagrangian.
- 4. Identify operator basis
 - 1. Matching coefficients: partonic hard scattering amplitudes
 - 2. Matrix elements: PDFs

Analysis is technical. Wear lab coat for protection!

© Callie Lipkin

Earlier work in SCET (w/o lab coats)

- Previous analyses found:
 - Different number of momentum regions in different frames.
 - \odot Non-factorization as $x \to 1$.
 - Exactorization, but additional soft contributions which are not part of the PDF.
 - □ Ignore perturbative non-factorization
 → Non-perturbative factorization due to confinement.

Correlator (whale) diagrams

• Now expand around limit $Q^2 \gg Q^2(1-x) \gg p^2$

Momentum regions

• Light-cone components $(n \cdot k, \bar{n} \cdot k, k_{\perp}^{\mu})$ in Breit frame: $k^2 = n \cdot k \, \bar{n} \cdot k + k_{\perp}^2$

hard-collinear:

$$p_X^{\mu} \sim Q(\epsilon, 1, \sqrt{\epsilon})$$

$$\epsilon = 1 - x$$

$$\lambda \sim m_N/Q \sim \Lambda_{\rm QCD}/Q$$

hard: Q(1, 1, 1)

anti-collinear:

$$p^{\mu} \sim Q(1, \lambda^2, \lambda)$$

Fig. 31. Leading regions for DIS.

Sterman '87

Example diagram

 Note: given loop in general has contributions from several momentum regions.

Effective theory

Lagrangian

• Two components of collinear quark fields ξ_{hc} and ξ_c are integrated out. Derivative expansion of \mathcal{L} .

$$\mathcal{L}_{\text{SCET}}(y) = \bar{\xi}_{hc} \frac{\not n}{2} \left[in \cdot D_{hc} + gn \cdot A_{sc}(y_{-}) \right] \xi_{hc} - \bar{\xi}_{hc} i \not D_{hc\perp} \frac{\not n}{2} \frac{1}{i\bar{n} \cdot D_{hc}} i \not D_{hc\perp} \xi_{hc}$$

$$+ \bar{\xi}_{\bar{c}} \frac{\not n}{2} \left[i\bar{n} \cdot D_{\bar{c}} + g\bar{n} \cdot A_{sc}(y_{+}) \right] \xi_{\bar{c}} - \bar{\xi}_{\bar{c}} i \not D_{\bar{c}\perp} \frac{\not n}{2} \frac{1}{in \cdot D_{\bar{c}}} i \not D_{\bar{c}\perp} \xi_{\bar{c}}$$

• Current operator $W_{hc}(x) = \mathbf{P} \exp \left(ig \int_{-\infty}^{0} ds \, \bar{n} \cdot A_{hc}(x + s\bar{n}) \right)$

$$(\bar{\psi}\gamma^{\mu}\psi)(x) \to \int dt \, \tilde{C}_V(t, n \cdot q, \mu) \, (\bar{\xi}_{\bar{c}}W_{\bar{c}})(x_-) \, \gamma^{\mu}_{\perp}(W_{hc}^{\dagger}\xi_{hc})(x + t\bar{n})$$

Current matching

• Bare Wilson coefficient C_V is on-shell QCD form factor.

2-loop result: Matsuura and van Neerven '89

- eff. theory loop diagrams vanish on shell (because they are scaleless).
- UV divergencies in eff. theory are equal IR to divergencies in QCD.

3-loop div's: Moch, Vermaseren and Vogt '05

$$C_V(Q^2, \mu) = \lim_{\epsilon \to 0} Z_V^{-1}(\epsilon, Q^2, \mu) F_{\text{bare}}(\epsilon, Q^2)$$

Wilson coefficient Cv

• 2-loop result: L=ln(Q^2/μ^2)

$$C_V(Q^2, \mu) = 1 + \frac{C_F \alpha_s}{4\pi} \left(-L^2 + 3L - 8 + \frac{\pi^2}{6} \right) + C_F \left(\frac{\alpha_s}{4\pi} \right)^2 \left[C_F H_F + C_A H_A + T_F n_f H_f \right],$$

with

$$H_{F} = \frac{L^{4}}{2} - 3L^{3} + \left(\frac{25}{2} - \frac{\pi^{2}}{6}\right)L^{2} + \left(-\frac{45}{2} - \frac{3\pi^{2}}{2} + 24\zeta_{3}\right)L + \frac{255}{8} + \frac{7\pi^{2}}{2} - \frac{83\pi^{4}}{360} - 30\zeta_{3},$$

$$H_{A} = \frac{11}{9}L^{3} + \left(-\frac{233}{18} + \frac{\pi^{2}}{3}\right)L^{2} + \left(\frac{2545}{54} + \frac{11\pi^{2}}{9} - 26\zeta_{3}\right)L$$

$$-\frac{51157}{648} - \frac{337\pi^{2}}{108} + \frac{11\pi^{4}}{45} + \frac{313}{9}\zeta_{3},$$

$$H_{f} = -\frac{4}{9}L^{3} + \frac{38}{9}L^{2} + \left(-\frac{418}{27} - \frac{4\pi^{2}}{9}\right)L + \frac{4085}{162} + \frac{23\pi^{2}}{27} + \frac{4}{9}\zeta_{3}.$$
(51)

Decoupling transformation

$$T_{\mu\nu} = i \int d^4x \, e^{iqx} \sum_{\sigma} \langle N(p,\sigma) | \, \mathrm{T} \left[J^{\dagger}_{\mu}(x) J_{\nu}(0) \right] \, | N(p,\sigma) \rangle$$

$$= |C_V(Q^2,\mu)|^2 \, i \int d^4x \, e^{iq\cdot x} \langle N(p) | \, T \left\{ \left(\bar{\xi}_{\bar{c}} W_{\bar{c}} \right) (x_-) \, \gamma^{\mu}_{\perp} \left(W^{\dagger}_{hc} \xi_{hc} \right) (x) \left(\bar{\xi}_{hc} W_{hc} \right) (0) \, \gamma^{\nu}_{\perp} \left(W^{\dagger}_{\bar{c}} \xi_{\bar{c}} \right) (0) \right\} | N(p) \rangle$$

Redefine

$$\xi_{hc}(x) \to S_n(x_-) \,\xi_{hc}^{(0)}(x) \,, \qquad A_{hc}^{\mu}(x) \to S_n(x_-) \,A_{hc}^{\mu(0)}(x) \,S_n^{\dagger}(x_-)$$
$$S_n(x) = \mathbf{P} \,\exp\left(ig \int_{-\infty}^0 ds \, n \cdot A_{sc}(x+sn)\right) \qquad S_n^{\dagger}(in \cdot \partial + n \cdot A_{sc}) S_n = in \cdot \partial$$

- The new hc-fields no longer interact with sc and c.
- Hard-collinear matrix element is jet function:

$$\langle 0 | T\{ (W_{hc}^{(0)\dagger} \xi_{hc}^{(0)})(x) (\bar{\xi}_{hc}^{(0)} W_{hc}^{(0)})(0) \} | 0 \rangle = \int \frac{d^4k}{(2\pi)^4} e^{-ik \cdot x} \frac{n}{2} \bar{n} \cdot k \mathcal{J}(k^2, \mu)$$

Jet function

 Can rewrite jet-function in terms of QCD fields

$$\frac{n}{2}\,\bar{n}\cdot p\,\mathcal{J}(p^2,\mu) = \int d^4x\,e^{-ip\cdot x}\,\langle 0\,|\,\mathrm{T}\left\{\frac{n}{4}\,\overline{n}\!\!\!\!/\,W^\dagger(0)\,\psi(0)\,\overline{\psi}(x)\,W(x)\,\frac{\overline{n}\!\!\!/\,n}{4}\right\}|0\rangle$$

Known to 2 loops.

Parton distribution function

$$\langle N(p)| (\bar{\xi}_{\bar{c}}W_{\bar{c}})(x_{-}) S_n(x_{-}) \gamma_{\perp}^{\mu} \frac{\not h}{2} \gamma_{\perp}^{\nu} S_n^{\dagger}(0) (W_{\bar{c}}^{\dagger} \xi_{\bar{c}})(0) |N(p)\rangle$$

$$= -\langle N(p)| (\bar{\xi}_{\bar{c}}W_{\bar{c}})(x_{-}) [x_{-}, 0]_{sc} (g_{\perp}^{\mu\nu} - i\epsilon_{\perp}^{\mu\nu}\gamma_{5}) \frac{n}{2} (W_{\bar{c}}^{\dagger} \xi_{\bar{c}})(0) |N(p)\rangle$$

→ Callen-Gross relation vanishes when averaged over spin

 Remaining matrix element is PDF in the end-point

$$\phi_q^{\rm ns}(\xi,\mu)|_{\xi\to 1} = \frac{1}{2\pi} \int_{-\infty}^{\infty} dt \, e^{-i\xi t n \cdot p} \, \langle N(p)| \, (\bar{\xi}_{\bar{c}} W_{\bar{c}})(tn) \, [tn,0]_{sc} \, \frac{\rlap/n}{2} \, (W_{\bar{c}}^{\dagger} \xi_{\bar{c}})(0) \, |N(p)\rangle$$

Factorization theorem

$$F_2^{\text{ns}}(x, Q^2) = \sum_q e_q^2 |C_V(Q^2, \mu)|^2 Q^2 \int_x^1 d\xi J(Q^2 \frac{\xi - x}{x}, \mu) \phi_q^{\text{ns}}(\xi, \mu)$$

Cusp singularities

• Decouple *sc* from collinear fields:

$$\xi_{\bar{c}}(x_{-}) \to S_{\bar{n}}(x_{-}) \, \xi_{\bar{c}}^{(0)}(x_{-}) \,, \qquad A_{\bar{c}}^{\mu}(x_{-}) \to S_{\bar{n}}(x_{-}) \, A_{\bar{c}}^{\mu(0)}(x_{-}) \, S_{\bar{n}}^{\dagger}(x_{-})$$

PDF factorizes

$$\phi_q^{\text{ns}}(\xi,\mu)|_{\xi\to 1} = \frac{1}{2\pi} \int_{-\infty}^{\infty} dt \, e^{-i\xi t n \cdot p} \, \langle N(p)| \, \frac{(\bar{\xi}_{\bar{c}}^{(0)} W_{\bar{c}}^{(0)})(tn) \, \frac{\rlap/n}{2}}{W_C(t)} \, W_C^{(0)\dagger}(\xi_{\bar{c}}^{(0)})(0) \, |N(p)\rangle$$

$$W_C(t) = S_{\bar{n}}^{\dagger}(tn) [tn, 0]_{sc} S_{\bar{n}}(0)$$

- Explains occurence cusp anomalous dimension in Altarelli-Parisi kernel.
- Both contributions non-perturbative.

A subtlety

• The two anti-collinear fields can only interact via *sc*-exchange, not directly!

Factorization summary

$$F_2^{\text{ns}}(x, Q^2) = \sum_q e_q^2 |C_V(Q^2, \mu)|^2 Q^2 \int_x^1 d\xi J(Q^2 \frac{\xi - x}{x}, \mu) \phi_q^{\text{ns}}(\xi, \mu)$$

hard part
OS form factor

hard-collinear propagator in LC gauge

anti-collinear + soft-collinear PDF for $\xi \rightarrow 1$

- Any choice of the scale μ will lead to large perturbative logarithms.
 - Solve RG for individual parts, evolve to common scale.

Web Images Video New! News Maps more »

resummation

Search

Advanced Search Preferences

Web

Results 1 - 10 of about 524,000 for resummation. (0.04 seconds)

[hep-ph/0605050] Threshold Resummation in Momentum Space from ...

Threshold Resummation in Momentum Space from Effective Field Theory ... A crucial ingredient to the momentum-space resummation is the exact solution to the ... arxiv.org/abs/hep-ph/0605050 - 6k - Cached - Similar pages

Resummation

More results from arxiv.org

Seminumerical resummation

Semi-numerical **resummation**. This package contains all programs necessary to compute in e+e- the SL resummed distribution matched with exact second order ... www.ippp.dur.ac.uk/~zander/numsum.html - 3k - <u>Cached</u> - <u>Similar pages</u>

Transverse momentum resummation demo

Transverse momentum resummation demo. ... Resummation program : C. Balazs, G. Ladinsky, C.-P. Yuan (Fortran); P. Nadolsky (C++); CTEQ Collaboration (CTEQ ...

Traditional method: moment space

Sterman '87, Catani and Trentadue '89

$$F_{2,N}^{\text{ns}}(Q^2) = \int_0^1 dx \, x^{N-1} F_2^{\text{ns}}(x, Q^2)$$
$$= C_N(Q^2, \mu_f) \sum_q e_q^2 \, \phi_{q,N}^{\text{ns}}(\mu_f)$$

- Convolution in momentum space → product in moment space
- $x \rightarrow 1$ corresponds to $N \rightarrow \infty$. Perturbation theory contains $\alpha_s^n \operatorname{Log}^n(N)$ and $\alpha_s^n \operatorname{Log}^{2n}(N)$
- Split:

$$C_N(Q^2, \mu_f) = g_0(Q^2, \mu_f) \exp \left[G_N(Q^2, \mu_f) \right]$$

Resummation in moment space

$$C_N(Q^2, \mu_f) = g_0(Q^2, \mu_f) \exp \left[G_N(Q^2, \mu_f)\right]$$

$$G_N(Q^2,\mu_f) = \int_0^1 dz \, \frac{z^{N-1}-1}{1-z} \qquad \text{Landau pole}$$

$$\times \left[\int_{\mu_f^2}^{(1-z)Q^2} \frac{dk^2}{k^2} \, A_q(\alpha_s(k)) + B_q\left(\alpha_s(Q\sqrt{1-z})\right) \right]$$
 Cusp anomalous dim. Anom. dim. of $\ref{eq:continuous}$?

• A_q , B_q determined by matching to fixed order result. NNNLL: Moch, Vermaseren, Vogt '05

Mellin Inversion

- Can only be done numerically
- Problem with Fortran PDF's.

Resummation by RG evolution: 1. hard part

• RG equation for C_V

$$\frac{d}{d \ln \mu} C_V(Q^2, \mu) = \left[\Gamma_{\text{cusp}}(\alpha_s) \ln \frac{Q^2}{\mu^2} + \gamma^V(\alpha_s) \right] C_V(Q^2, \mu)$$

structure: TB, Hill, Lange, Neubert '03

3-loop anomalous dim.: Moch, Vermaseren Vogt '05

Solution

$$C_V(Q^2, \mu) = \exp\left[2S(\mu_h, \mu) - a_{\gamma V}(\mu_h, \mu)\right] \left(\frac{Q^2}{\mu_h^2}\right)^{-a_{\Gamma}(\mu_h, \mu)} C_V(Q^2, \mu_h)$$

$$S(\nu,\mu) = -\int_{\alpha_s(\nu)}^{\alpha_s(\mu)} d\alpha \frac{\Gamma_{\text{cusp}}(\alpha)}{\beta(\alpha)} \int_{\alpha_s(\nu)}^{\alpha} \frac{d\alpha'}{\beta(\alpha')}, \qquad a_{\Gamma}(\nu,\mu) = -\int_{\alpha_s(\nu)}^{\alpha_s(\mu)} d\alpha \frac{\Gamma_{\text{cusp}}(\alpha)}{\beta(\alpha)}$$

Resummation by RG evolution: 2. jet function

$$\frac{dJ(p^{2}, \mu)}{d \ln \mu} = -\left[2\Gamma_{\text{cusp}}(\alpha_{s}) \ln \frac{p^{2}}{\mu^{2}} + 2\gamma^{J}(\alpha_{s})\right] J(p^{2}, \mu)
-2\Gamma_{\text{cusp}}(\alpha_{s}) \int_{0}^{p^{2}} dp'^{2} \frac{J(p'^{2}, \mu) - J(p^{2}, \mu)}{p^{2} - p'^{2}}$$

$$J(p^{2}, \mu) = \exp\left[-4S(\mu_{i}, \mu) + 2a_{\gamma^{J}}(\mu_{i}, \mu)\right]$$
$$\times \widetilde{j}(\partial_{\eta}, \mu_{i}) \frac{e^{-\gamma_{E}\eta}}{\Gamma(\eta)} \frac{1}{p^{2}} \left(\frac{p^{2}}{\mu_{i}^{2}}\right)^{\eta},$$

$$\eta = 2 \int_{\mu_0}^{\mu_i} \frac{d\mu}{\mu} \Gamma_{\text{cusp}}[\alpha_s(\mu)]$$
$$= 2a_{\Gamma}(\mu_i, \mu).$$

• Associated jet-function \tilde{j} is Laplace transform of $J(p^2, \mu_i)$.

$$\widetilde{j}\Big(\ln\frac{Q^2}{\mu^2},\mu\Big) = \int_0^\infty dp^2 \, e^{-sp^2} \, J(p^2,\mu) \quad \text{with} \quad s = 1/(e^{\gamma_E} Q^2)$$

Resummation by RG evolution: 3. PDF near the end-point

$$\frac{d}{d \ln \mu} \phi_q^{\text{ns}}(\xi, \mu) = \int_{\xi}^{1} \frac{dz}{z} P_{q \leftarrow q}^{(\text{endpt})}(z) \phi_q^{\text{ns}}(\frac{\xi}{z}, \mu)$$

$$P_{q \leftarrow q}^{\text{(endpt)}}(z) = \frac{2\Gamma_{\text{cusp}}(\alpha_s)}{(1-z)_+} + 2\gamma^{\phi}(\alpha_s) \,\delta(1-z)$$

Equation (and its solution) can be obtained from

$$\frac{d}{d\ln\mu}F_2(x,Q^2) = 0$$

• Can obtain 3-loop γ^J using

$$\gamma^J = \gamma^\phi + \gamma^V$$
 Moch, Vermaseren Vogt '04

Result for F₂

• Evolve C_V and J from μ_h and μ_i to scale μ_f , plug into factorization theorem

$$F_2^{\text{ns}}(x, Q^2) = \sum_{q} e_q^2 |C_V(Q^2, \mu_h)|^2 U(Q, \mu_h, \mu_i, \mu_f)$$

$$\times \widetilde{j} \left(\ln \frac{Q^2}{\mu_i^2} + \partial_{\eta}, \mu_i \right) \frac{e^{-\gamma_E \eta}}{\Gamma(\eta)} \int_x^1 d\xi \, \frac{\phi_q^{\text{ns}}(\xi, \mu_f)}{(\xi - x)^{1 - \eta}}$$

$$U(Q, \mu_h, \mu_i, \mu_f) = \exp\left[4S(\mu_h, \mu_i) - 2a_{\gamma_V}(\mu_h, \mu_i)\right] \times \left(\frac{Q^2}{\mu_h^2}\right)^{-2a_{\Gamma}(\mu_h, \mu_i)} \exp\left[2a_{\gamma^{\phi}}(\mu_i, \mu_f)\right],$$

Result

• If we assume $\phi_q(x,\mu_f) \sim (1-x)^{b(\mu f)}$:

$$\frac{F_2^{\text{ns}}(x, Q^2)}{\sum_q e_q^2 x \, \phi_q^{\text{ns}}(x, \mu_f)} = |C_V(Q^2, \mu_h)|^2 U(Q, \mu_h, \mu_i, \mu_f)
\times (1 - x)^{\eta} \, \widetilde{j} \left(\ln \frac{Q^2(1 - x)}{\mu_i^2} + \partial_{\eta}, \mu_i \right)
\times \frac{e^{-\gamma_E \eta} \, \Gamma(1 + b(\mu_f))}{\Gamma(1 + b(\mu_f) + \eta)}.$$

• Resummed result obtained after plugging in fixed order results for coefficient C_{V_i} , jet-function and anom. dimensions.

Difference to traditional approach

- Simple analytic result in momentum space
- No Landau pole ambiguities. No coupling constant below scales μ_h , μ_i and μ_f .
- Freedom to choose scales μ_h , μ_i and μ_f
 - Obtain fixed order for $\mu_h = \mu_i = \mu_f$. Trivial matching to fixed order result for generic x.
 - Set appropriate scales *after* integrating
 - Avoids large spurious power corrections discussed by Catani et al. hep-ph/9604351
 - Estimate uncertainties with scale variation

Result for $F_2^{ns}(x)/\phi_q(x)$

- Default scales: $\mu_h^2 = Q^2$ and $\mu_i^2 = Q^2(1-x)$
 - Bands obtained by varying these scales a factor of two up and down.
 - Matching scales are fixed in traditional approach.

Comparison with fixed order, $\mu_f = Q$

- LO (=NLL), NLO, NNLO
- Dashed: fixed order. Solid: resummed.
- Large K-factors.

Comparison with fixed order, low μ_f

- LO (=NLL), NLO, NNLO
- Dashed: fixed order. Solid: resummed.
- Fixed order with $\mu = \mu_f$ fairly close to resummed result!

Comparison with moment space result

- Dashed: Mellin inverted moment space results. Solid: momentum space results.
- Only small numerical differences (different scale choice, 1/N corrections in moment space).
- Faster convergence of momentum space results.

Connection with standard approach

 Can compare EFT expression for moments with standard results. The two agree provided that

$$\left(1 + \frac{\pi^2}{12} \nabla^2 + \dots\right) B_q(\alpha_s) = \gamma^J(\alpha_s) + \nabla \ln \tilde{j}(0, \mu)$$

$$- \left(\frac{\pi^2}{12} \nabla - \frac{\zeta_3}{3} \nabla^2 + \dots\right) \Gamma_{\text{cusp}}(\alpha_s), \qquad \nabla = d/d \ln \mu^2.$$

• fulfilled with two-result from explicit calculation of $J(p^2)$.

Momentum space?

- Past controversy about performing resummations in momentum space.
 Claims that
 - 1. exponentiation is incomplete
 - 2. momentum conservation is violated
 - 3. there are large ambiguities, not related to Landau pole singularities.

Catani, Mangano, Nason, Trentadue '96

• 3. are not present in our formalism. Not sure what 1. and 2. mean.

Integral over structure function at LL

$$\mathcal{F}_2^{\text{ns}}(x, Q^2) = \int_{1-x}^1 dy \, F_2^{\text{ns}}(y, Q^2)$$

• LL, expand exponent in $a = \Gamma_0 \frac{\alpha_s(Q)}{8\pi}$

$$\mathcal{F}_2^{\text{ns}}(x, Q^2) = \int_{1-x}^1 dy \sum_q e_q^2 y \,\phi_q^{\text{ns}}(y, Q) \,\exp\left[-a \ln^2 \frac{\mu_i^2}{\mu_h^2} + 2a \ln \frac{\mu_i^2}{\mu_f^2} \,\ln(1-y)\right]$$

• With scale choice $\mu_f = \mu_h = Q$, $\mu_i \approx Q\sqrt{1-y}$

$$= \int_{1-x}^{1} dy \sum_{q} e_q^2 y \,\phi_q^{\text{ns}}(y, \mu_f) \,\exp\left[a \ln^2(1-y)\right]$$

Nonintegrable singularity!

• Choose scales after integration!

Summary

- Traditionally, resummation for hard processes is performed in moment space.
 - Landau poles (in Sudakov exponent and Mellin inversion)
 - Mellin inversion only numerically
- Solving RG equations in SCET, we have obtained resummed expressions directly in momentum space.
 - Clear scale separation. No Landau pole ambiguities.
 - Simple analytic expressions.
 - Trivial connection with fixed order expressions.
- Same technology should be applicable to many other processes.
 - Threshold resummation for DY and Higgs production under way.